
Kaemika User Manual

Installation

macOS https://apps.apple.com/us/app/kaemika/id1493299038?mt=12

iOS https://apps.apple.com/app/id1491803017

Android

Windows

GitHub

Sources

https://play.google.com/store/apps/details?id=com.kaemika.Kaemika&hl=en_GB

https://www.microsoft.com/en-us/p/kaemika/9n258rnwv8pr?activetab=pivot:overviewtab

https://github.com/luca-cardelli/KaemikaXM
(installation from GitHub is not supported)

LNA options

Panels and Menus

Main interface view: showing the default script “Start Here” and its
output after the app is first opened and the play button is pressed.

Tutorials
and docs

Save file

Load file

Export

Change
font size

Play button
Stop button
(when needed)

Legend

Microfluidics
panel

Script panel Graph panel

Output panel

Output choice

Settings

Characters

Resize panels

Windows version

Parameters
panel
(when needed)

Resize window

Panels and Menus

Graphical output is touch-enabled
1-finger tap: select or activate
1-finger double-tap: activate
1-finger drag: move
2-finger tap: reset pan and zoom
2-finger drag: pan
2-finger pinch: zoom

macOS version

Functionally identical to the Windows version.

Choice of
ODE solvers

LNA options

Android/iOS versions
Nearly identical functionality to Win/Mac, but arranged
in 5 pages directly accessible from the bottom tabs:
• Tutorial (built-in scripts and docs)
• Files (user scripts repository)
• Edit (script editor)
• Output (Graph&Text Output and Export Menu)
• Chart (Plots and Legends, and Microfluidics)

Reaction score (graphical representation of reaction network) examples

Horizonal lines: species. Vertical stripes: reactions. Blue: reagents. Red: products. Green: catalysts.

Operation: Chemical reaction network simulation

1. Select a script

2. Select simulation options
(stochastic LNA, ±σ)

3. Press the Play button

4. Results:

Simulation plot
(mean ± standard deviation)

Hovering on trajectories reveals values.
Hovering on species tags reveals ODEs.
Pan&Zoom: mouse(Win/macOS) or touch(Android/iOS)

Legend
Click to hide/unhide plot trajectories.
Shift-click to focus on a single trajectory.
Shift-click such a single trajectory to unfocus it.

Reaction score
Graphical representation of the
generated chemical reactions,
as a directed multigraph

Hovering reveals reaction text.
Bin-packing.
Drag species tags to reorder them.
Highlight reaction relationships
while hovering.

Other outputs from the Computed Output menu

Show initial CRN
A self-contained summary of initial conditions,
reactions, and ODEs generated by the input script.

Further details are in
Show reactions/equations/stoichiometry
especially for multi-stage simulations (protocols).

Show evaluation
List of entities defined by input script evaluation,
and any computational results.
Show chemical trace
Chemical events that occurred during evaluation.
Show protocol
Protocol events that occurred during evaluation.

Export

Use the system clipboard to export (and import) any text.

All graphics can be exported as bitmaps to the clipboard.

All graphics can be exported to file in resolution independent
Scalable Vector Graphics format, for help with publication.

Simulation data, as filtered by the Legend, can be exported
to file in Comma-Separated Values .csv format.

CRNs and ODEs can be exported to SBML and some other tools,
and anyway they can be copied out as text and adapted as needed.
Applies to the last simulated sample.

Protocol graphs can be exported in textual GraphViz format.
(They are not graphically rendered in the Windows/MacOS version;
they are graphically rendered in the iOS/Android version,
and there they can be exported as text through the clipboard.)

In addition, the “Show equations” option in the “Computed output”
menu generates (when LNA is enabled) the symbolic LNA equations
for covariances, which can be analyzed in more appropriate tools
such as Mathematica.

Saving, Loading, Editing scripts on Windows/MacOS

Directory
Right away, use the Settings icon on the bottom right to set a convenient default directory for your scripts.

Files
Start by selecting a script from the Tutorial menu. It’s a copy, you can edit it.

Use the Save icon to save the current script through the standard system dialog.

Use the Load icon to load a script through the standard system dialog.

You can also cut and paste into the script window from the system clipboard.

The script
The “current script” does not have a name; all saves are “Save As”.

There is no list of saved scripts other than what you manage yourself in your directory.

Changes are saved automatically, in the sense that the last script will be reloaded

if you close (or crash) and reopen the app.

Backup
Set the default directory to your user space, to make sure that your scripts

are not lost if the Kaemika app is updated or installed elsewhere.

Saving, Loading, Editing scripts on Android/iOS

Tutorial tab (built-in scripts)
Click an item in the list to open it and auto-switch to the Edit tab.
Then click the Pencil icon at the top to enable modifications.
Modified tutorial scripts are automatically added to the Files tab.

Files tab (user scripts, initially empty)
Click an item in the list to open it and auto-switch to the Edit tab.
Android: press-hold an item in the list to rename or delete it.
iOS: swipe left an item in the list to rename or delete it.
You can create a new script from the Plus button (top right).

Edit tab (single-script editing)
If coming from Tutorial, click the Pencil icon at the top to enable editing.
An additional tool bar at the top contains some common input strigs.
Click the Keyboard icon to bring the system keyboard up or down, if needed.
The clipboard icons at the top can be used to Copy the whole script to the system
clipboard, or to Paste (overwrite) the whole script from the system clipboard
(repeat Paste to undo).

Backup
Through the system clipboard, you can backup a script to any other app or storage
system: the Kaemika app has no direct access to locations outside of its domain.
WARNING: the Files tab scripts may get erased if you reinstall or update Kaemika.

Undo text changes
iOS: shake the phone to undo; also, on iOS 13+ left-swipe with 3 fingers while the keyboard is up.
Android: the Hacker's Keyboard from the Play Store, which swaps in for the built-in keyboard, supports
undo via Ctrl-Z, as well as Ctrl-X/C/V. There is no Android-wide way to undo text changes!

1. Select a script

2. Activate microfluidics

3. Press the Play button

Operation: Digital microfluidics

4. Results:

Droplets will split and merge according to the
script, routing themselves to the right spots.
But there is no chemistry in the Droplets script.

6. Press the (now paused)
Play button

7. The combined droplet moves,
simulates, and is recycled.
This final simulation combines the
reagents of the two initial droplets

8. Shift-click the Play button to
do it again without pauses.

9. Turn off microfluidics.
See a summary of the
protocol steps in
in “Show protocol”,
and of the chemical kinetics
in “Show reactions”

1. Select a script

2. Press the Play button
(with microfluidics on)

3. One droplets moves to a
“warm” spot. It stops there,
and a simulation runs.
After that, it goes back home.
A second droplet appears.

4. Press the (now paused)
Play button

5. The second droplet moves,
simulates, and then combines
with the first one.

Operation: Mixed simulation and microfluidics protocol

Predatorial

function Predatorial(number n) {
if n = 0 then
define species prey @ 1 M
prey -> 2 prey
report prey
yield prey

else
define species predator @ 1/n M
species prey = Predatorial(n-1)
prey + predator ->{n} 2 predator
predator -> Ø
report predator
yield predator

end
}

species apexPredator = Predatorial(5)
equilibrate for 50

<- Make a stack of n predator-prey networks, each predator feeding on the next one
<- If n=0 there is only prey, no predators
<- Define and initialize the prey species
<- Chemical reaction: the prey reproduces
<- Report the prey for plotting
<- Return the prey species as the result of the function
<- Else if n>0
<- Define and initialize a predator species
<- Its prey is the result of Predatorial(n-1), the next species down the stack
<- Chemical reaction: predator eats prey and reproduces
<- Chemical reaction: predator dies (if it does not find prey quickly enough)
<- Report this predator species (there will be many) for plotting
<- Return the predator species as the result of the function

<- Make a stack of 5
<- Simulate

Basic Scripting

Literals, Functions, and Operators for base types

bool true | false | not b | b1 and b2 | b1 or b2 | b1 = b2 | b1 <> b2

number 0 | 1 | -2.3 | 4.5e-67 | … | -n | n1 + n2 | n1 - n2 | n1 · n2 | n1 / n2 | n1 ^ n2 | n1 * n2 ≡ n1 · n2
n1 = n2 | n1 <> n2 | n1 > n2 | n1 < n2 | n1 >= n2 | n1 >= n2 | int(n) | pos(n) |
abs(n) | arccos(n) | arcsin(n) | arctan(n) | arctan2(n1,n2) | ceiling(n) | cos(n) | cosh(n) | exp(n) | floor(n) |
log(n) | max(n1,n2) | min(n1,n2) | sign(n) | sin(n) | sinh(n) | sqrt(n) | tan(n) | tanh(n) |
pi | e | maxNumber | minNumber | positiveInfinity | negativeInfinity | NaN

string “” | “abc” | “de\”fg\\hi” | … | s1 + s2 | s() | s(n) | s(n1,n2) | basename(sp) | s1 = s2 | s1 <> s2

list [] | [1, 2, 3] | [[“a”,”b”],[“c”,”d]] | … | l1 ++ l2 | l() | l(n) | l(n1,n2) | l1 = l2 | l1 <> l2 |
map(fun,l) | each(net,l) | filter(fun,l) | foldl(fun,z,l) | foldr(fun,z,l) | sort(fun,l) | reverse(l) | transpose(l)

species a | b | c | … | sp1 = sp2 | sp1 <> sp2

function λ(){3} | λ(x){x} | λ(number n){n+1} | λ(function f){define bool b = f(0)>0 yield b} | … fun ≡ λ
network η(){species s @ 3mM; s + s -> Ø} | η(species s){s -> Ø; Ø -> s + s} | … # ≡ Ø net ≡ η

sample sample A {1mL, 20C} | mix S0 = S1,…,Sk | split S1,…,Sk = S0 by n1,…,nk | dispose S1,…,Sk |
regulate S1,…,Sk to 25C | concentrate S1,…,Sk to 2mL | equilibrate S1,…,Sk for 12

concat length 0-index substring start,length

concat length 0-index sublist start,length

not equalequal

base e

non-α-converted name of species as string

proportionsvolume temperature

temperature volume seconds

ascii unicode

ascii unicode

ascii unicode ascii unicode

round to integer round to non-negative real

escape

Basic Scripting

Averaging simulation runs

function run(number i) {
define

sample S
number x₀ = <-uniform(0,1)
species x @ x₀ M in S
x -> Ø
report y = sqrt(var(x)) in S
equilibrate S for 1

yield y
}

list L = draw 10 from run

report foldl(fun(a b){a+b}, 0, L)/10 as “avg”
each(net(f){report f}, L)
equilibrate for 1

<- Make a function to run one simulation (i is an iteration index)
<- define D yield E returns the value of E after executing the statements D
<- Make a new sample S to contain species and reactions for simulation
<- Draw an initial value x₀ from a uniform distribution
<- Initialize a new species x to that value, and place it inside S
<- The reaction network for S (using just one reaction as an example)
<- report the s.d. sqrt(var(x)) of x into a timeflow y extracted from S
<- Simulate (and plot) sample S for 1 sec, with LNA enabled for var(x) to work
<- Return the timeflow y (i.e., the full trajectory of sqrt(var(x)))

<- Invoke run(i) for i = 0..9, making a list L of 10 (randomized) timeflows
(Shift-click the Play button, or it will pause at every simulation!)

<- Fold* the average of the 10 timeflows from L into a new report, “avg”
<- report also each* of the 10 timeflows from earlier simulations
<- Run a final simulation to combine all the reports in a new plot

The 10 s.d. timeflows and their average can now be exported to file

*fun(..){..} is a nameless function, net(..){..} is a nameless network (a function with no value)
foldl and each are list iterators over functions and networks respectively

Advanced Scripting

Local Sensitivity Analysis (of a Lotka-Volterra system)

function f(number r1 r2 r3) {
define
sample S
species x1 @ 0.66 M in S
species x2 @ 0.44 M in S
x1 -> x1 + x1 {r1}
x1 + x2 -> x2 + x2 {r2}
x2 -> Ø {r3}
report t1 = x1, t2 = x2 in S
equilibrate S for 20

yield [t1, t2]
}

number d = 0.0001
[[t1, t2], [t1r1, t2r1], [t1r2, t2r2], [t1r3, t2r3]] =

[f(1,1,1), f(1+d, 1, 1),f(1, 1+d, 1), f(1, 1, 1+d)]

report t1 as "x1", t2 as "x2",
abs((t1-t1r1)/d) as "x1r1", abs((t1-t1r2)/d) as "x1r2",
abs((t1-t1r3)/d) as "x1r3", abs((t2-t2r1)/d) as "x2r1",
abs((t2-t2r2)/d) as "x2r2", abs((t2-t2r3)/d) as "x2r3"

equilibrate for 20

<- A function to run one simulation (ri are the input parameters to be perturbed)
<- define D yield E returns the value of E after executing the statements D
<- Make a new sample S to contain species and reactions for simulation
<- Lotka-Volterra prey species (initial conditions could be a parameter as well)
<- Lotka-Volterra predator species (initial conditions could be a parameter as well)
<- Prey x1 reproduces, with rate r1
<- Predator x2 eats prey, with rate r2
<- Predator dies, with rate r3
<- Report the timeflow (full trajectory) t1 for x1, and t2 for x2
<- Simulate the system: this will compute the timeflows t1,t2 (without plotting them)
<- Return the output timeflows t1,t2 affected by the parameters r1,r2,r3

<- Perturbation value
<- Obtain a matrix of the 2 system outputs ti and their 3 individual perturbations tirj
<- (Shift-click the Play button, or it will pause at every simulation!)

<- Prepare to report a plot of the sensitivities abs((ti – tirj)/d)
using the timeflows ti,tirj previously computed

<- Run a final simulation just to combine all the reports in a new plot

Advanced Scripting

… continued

The plots show the instantaneous sensitivities of x1,x2 with respect to the
rate parameter r1,r2,r3 (separately), over the entire timecourse

x1 is usually more sensitive to r1 than to r2,r3

Advanced Scripting

a point near the peak of x1 is not sensitive to r1 or r3
and instead is most sensitive to r2

x2 is usually more sensitive to r1 than to r2,r3
(and x2’s peak sensitivity exceeds x1’s)

a point near the peak of x2 is not sensitive to r1 or r3
and instead is most sensitive to r2

Global Sensitivity Analysis (of a Lotka-Volterra system)

function f(number r1 r2 r3) {
define
sample S
species x1 @ 0.66 M in S
species x2 @ 0.44 M in S
x1 -> x1 + x1 {r1}
x1 + x2 -> x2 + x2 {r2}
x2 -> Ø {r3}
equilibrate S for 2.5

yield [observe(x1,S), observe(x2,S)]
}

random X(omega w) {
f(1+(w(0)-0.5)/10, 1+(w(1)-0.5)/10, 1+(w(2)-0.5)/10)

}

draw 2000 from X

<- A function f to run one simulation (ri are the input parameters to be perturbed)
<- define D yield E returns the value of E after executing the statements D
<- Make a new sample S to contain species and reactions for simulation
<- Lotka-Volterra prey species x1 (initial conditions could be a parameter as well)
<- Lotka-Volterra predator species x2
<- Prey reproduces, with perturbed rate r1
<- Predator eats prey, with perturbed rate r2
<- Predator dies, with perturbed rate r3
<- Simulate the system up to time 2.5 (first peak of the oscillation)
<- Return the output concentrations of x1,x2 from S at time 2.5 as pairs

<- Create a bivariate random variable X over uniform[0..1) sample spaces w(i)
<- producing random instances f(1+e1, 1+e2, 1+e3) = [x1,x2]e1,e2,e3,t=2.5

with e1, e2, e3 being 10% independent perturbations of the parameters

<- Produce a density plot of 2000 instances drawn from X
i.e. a plot of the distributions of X[0]=x1 and X[1]=x2 at time 2.5
vertical bars are mean and standard deviation

N.B., consider also exporting your Kaemika model to SBML and
use the Sobol’ method of global sensitivity analysis in e.g. Copasi.

Advanced Scripting

x1 sensitivity to random
<10% parameter variations
at time 2.5

